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Cloud computing currently lies at the heart of tremendous emerging information 
applications, providing various reliable and high-performance services based on vast 
amounts of individual and organizational data. Paillier homomorphic encryption (PHE) 
[6] is one of the critical privacy computing techniques that enables the ciphertext to enjoy 
equivalent utility as the plaintext. In the PHE scheme shown on the upper left of Fig.
15.4.1, the client encrypts its plaintext into ciphertext and then sends it to the server,
which performs the homomorphic evaluation and returns the encrypted results to the
client. However, this process avoids the delivery of plaintext at the cost of several
computing burdens, and we list three dominant challenges in the rest of Fig. 15.4.1. First, 
the ciphertext domain calculation needs expensive large integer modular arithmetic
operations (e.g., modular multiplication (ModMul), modular inversion (ModInv), and
modular exponentiation (ModExp)) with several orders of magnitude higher energy and 
latency. Second, the client performs encryption and decryption featuring independent
vector operations, while the server is expected to perform evaluations with multiply-and-
accumulation (MAC) operations. Third, the diversity of tasks requires computing
scalability to meet the latency and throughput demands in the cloud. 
 
This paper presents a high-performance Paillier homomorphic encryption processor unit 
(PH-EPU) that includes: 1) two efficient modular processing units (i.e., Montgomery unit 
and Stein unit) with dynamic bit-width for basic Paillier homomorphic operations; 2) 
efficient ciphertext processing elements featuring a reconfigurable dataflow using bit-
serial computing for different task patterns; 3) a scalable computing flow using 
instruction-based control for various workload volumes. This 28nm processor consumes 
42.96mm2 and operates at 500MHz and 0.9V, which supports encryption, decryption, 
and homomorphic evaluation of Paillier. Our PH-EPU achieves up to 14.9× speedup 
compared to a desktop CPU Intel Core i9-9900 with 16 cores, and our system-level PCIe 
card with 8 chips takes up to 22.8× lower latency than a server CPU Intel Xeon Platinum 
8260M with 192 cores. 
 
The overall architecture shown in Fig. 15.4.2 comprises a top controller, a global memory 
system with three buffers, and 16 ciphertext processing elements with bit-serial 
reconfigurable dataflow (BSRD-PE). The top controller manages the data interaction 
between the input/output buffers and 16 BSRD-PEs via a 256-bit bus. Each BSRD-PE 
consists of a weight buffer of 9KB, an input buffer of 8KB, an output buffer of 1KB, a 
look-up-table of partial-sum terms for bit-serial processing, a Montgomery unit (MU), 
and a Stein unit (SU). The MU performs the Montgomery modular multiplication (Mont) 
that can be organized as ModMul and ModExp operations for the Paillier algorithm. The 
SU leverages the Stein modular inversion algorithm (Stein) for the ModInv operation. 
These two primitive execution units solve the first challenge of modular operations via 
specialized arithmetic hardware. However, such common ModExp dataflow is inefficient 
for performing the dependent MACs in the evaluation stage, so we further extend a plug-
in partial-sum (Psum) term look-up-table (LUT) coupled with a bit-1 selector to leverage 
the bit-level sparsity. The overall data path helps to process diverse computing patterns 
in the second challenge with high efficiency. The scale-out computing for the third 
challenge is realized by an instruction-based control flow combined with an automatic 
scheduling flow at the system level. 
 
Figure 15.4.3 describes the implementation of MU and SU in detail. The MU mainly 
comprises three 256-bit multipliers for the compute-intensive Mont. The two-stage 
Montgomery operation has several similar iterations, the number of which lies on the 
width of multiplier (B). We evaluate four alternatives of B and select the 256-bit 
counterpart as it obtains the highest cost-efficiency. Therefore, based on the 256-bit 
operands, the first stage is to update the q-value, a dependent intermediate variable for 
the second stage. The second stage executes large-integer multiplications (4096b×256b) 
for the intermediate Montgomery results, where it takes 16 cycles using the 256-bit 
multipliers. The SU contains a local register file, a lightweight branch detector (BD), and 
execution units (EU) for the control-intensive Stein. The BD is only fed with the critical 
bits for branch detection to eliminate redundant fan-out, while the EU contains three 
4102b adders and one shifter unit to perform the operations of each branch in one cycle. 
To avoid the bubbles coming from the branch detection, we further forward the updated 
results before the pipeline registers to the BD stage in each loop, which guarantees the 
utilization of SU. 

Figure 15.4.4 depicts the dataflow inside the BSRD-PE for two typical computing patterns 
of Paillier: a 4-stage bit-serial mode for dependent MAC operations and a classical 
pipeline mode for regular modular operations. The dataflow between the two modes is 
reconfigured by the PE controller, reusing the same set of resources. Mode-1 employs 
the bit sparsity of weights via the bit-1 selector to improve the performance. In step 1, 
we decouple the partial sum (Psum) into eight terms corresponding to the accumulated 
results based on eight bits of weights. For each weight, the selector searches for the 
positions of bit-1 to indicate the update of the corresponding Psum terms. After finishing 
all the weights, since the native Psum data after step 1 does not consider the magnitude, 
the Psum terms are aligned in step 2 by performing Mont several times according to 
their bit positions. Step 3 further processes the negative sign term of Psum (i.e., Psum7) 
through Stein once and Mont twice. Step 4 reduces all the Psum terms and gets the final 
result. Mode-2 is reconfigured to carry out the basic modular operations of Paillier, where 
ModMul and ModExp are implemented by repeatedly invoking the MU while SU 
implements the ModInv. In the case of ModExp, the corresponding weight is up to 4096b, 
so a fast exponentiation algorithm is introduced by multiplexing the bit-1 selector of 
mode-1 to skip the sparse bits in the same way. 

Figure 15.4.5 shows an efficient task deployment flow across PEs and chips. The 
compiler executes task assignment, memory allocation, and instruction generation to 
generate the runtime and instructions for a full-height-full-length (FHFL) PCIe card 
integrated with a host FPGA and 8 PH-EPU chips. Typically for the convolution, since 
the bandwidth requirement of ciphertext is much larger than the plaintext weight, the 
task assignment at the chip level is prioritized in the output channel to broadcast the 
ciphertext and save bandwidth. For the PE level, we employ a search-optimized partition 
scheme to decide the parallelism of height (ParaH), width (ParaW), and channel (ParaK) 
of the 3D output feature maps across 16 PEs. We also establish a system-level 
experiment flow to simulate the complete process between the client and the server. The 
runtime library loads the input data and execution instructions to the cards through host 
CPUs. To demonstrate the scalability of our system, we evaluate a series of tasks with 
different workload volumes. The end-to-end evaluation results, including both software 
and hardware time except for the communication time between client and server, show 
that our PH-EPU chip and 8-chip card outperform the desktop and server CPUs 
significantly and present better scalability.  

Figure 15.4.6 firstly demonstrates the efficiency of the critical primitive operations (i.e., 
Mont and ModInv) and the bit-serial optimization. The energy efficiency of our accelerator 
exceeds that of the CPU by several orders of magnitude. As for the bit-sparsity efficiency, 
we evaluate four data patterns of different sparsity rates. Results show an effective 
utilization of the zero-bit skipping with up to 3.3× speedup in 75% sparsity. This figure 
also shows the comparison table with prior work on custom hardware design for 
homomorphic encryption. Our PH-EPU supports all types of HE tasks (encryption, 
decryption, and evaluation) with high flexibility. It also supports dynamic bit-width for 
the ciphertext and weights while leveraging bit-serial sparsity to optimize the 
performance. The throughput of typical operations in Paillier achieves 23~68MOPS for 
Mont and 38KOPS for ModInv with 0.18~0.52μJ/Op and 105.3μJ/Op efficiency, 
respectively. Compared with a current Paillier processor [4], 115×~340× better 
throughput and 30.4×~87.8× improved energy efficiency are obtained for Mont. Figure 
15.4.7 shows the chip micrograph and specifications for both the chip and PCIe card. 
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Figure 15.4.1: Paillier homomorphic encryption (PHE) challenges.
Figure 15.4.2: System architecture of the Paillier homomorphic encryption 
accelerator (PH-EPU).

Figure 15.4.3: Illustration of the Montgomery unit (MU) and the Stein unit (SU).
Figure 15.4.4: Details of the reconfigurable dataflow to enable bit-serial MACs and 
basic modular operations.

Figure 15.4.5: Task deployment flow and performance comparison with software 
implementations. Figure 15.4.6: The energy/bit-sparsity efficiency summaries and comparison table.
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Figure 15.4.7: Chip micrograph combined with specification tables for the chip and 
the 8-chip PCIe card.

 


