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ABSTRACT 
Computing-in-memory (CiM) is a promising technique to achieve 
high energy efficiency in data-intensive matrix-vector 
multiplication (MVM) by relieving the memory bo"leneck. 
Unfortunately, due to the limited SRAM capacity, existing SRAM-
based CiM needs to reload the weights from DRAM in large-scale 
networks. #is undesired fact weakens the energy efficiency 
significantly. #is work, for the first time, proposes the concept, 
design, and optimization of computing-in-ROM to achieve much 
higher on-chip memory capacity, and thus less DRAM access and 
lower energy consumption. Furthermore, to support different 
computing scenarios with varying weights, a weight fine-tune 
technique, namely Residual Branch (ReBranch), is also proposed. 
ReBranch combines ROM-CiM and assisting SRAM-CiM to 
achieve high versatility. YOLoC, a ReBranch-assisted ROM-CiM 
framework for object detection is presented and evaluated. With 
the same area in 28nm CMOS, YOLoC for several datasets has 
shown significant energy efficiency improvement by 14.8x for 
YOLO (DarkNet-19) and 4.8x for ResNet-18, with <8% latency 
overhead and almost no mean average precision (mAP) loss (-0.5% 
~ +0.2%), compared with the fully SRAM-based CiM. 
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• Hardware ~ Integrated circuits ~ Semiconductor memory ~ Read-
only memory • Computing methodologies ~ Artificial intelligence 
~ Computer vision ~ Computer vision problems ~ Object detection 
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1 Introduction 
Convolutional neural network (CNN) has been widely used in 
computer vision and other applications. To support more 
scenarios, generally, increasing parameters in CNN are being used 
in complex models. For example, Tiny-YOLO and YOLO have 11.3 
M and 46 M weights, respectively. In a custom accelerator chip 
design, to reduce the memory-wall overheads of energy and 
latency in frequent DRAM data accesses [1][2], computing-in-
memory (CiM) techniques have been proposed based on CMOS 
SRAM/eDRAM[3][4][5] and other beyond-CMOS technologies 
[6][7]. Among these existing techniques, SRAM-based CiM is 
intriguing because of its high design flexibility and mature 
fabrication support. Unfortunately, SRAM and SRAM-based CiM 
face the challenge of low density: it is challenging to store all 
weights inside one chip for large neural networks. Consequently, 
the data in the SRAM need to be dumped and reloaded from the 
DRAM, which results in undesired energy and latency costs [8]. 
Notice that, although reusing the weight data reduces the total 

times of DRAM access [9], loading the weights from DRAM is a 
bottleneck towards high energy efficiency [10].  

One approach to the mitigation of the memory capacity 
dilemma is using an advanced process technology with scaled-
down transistors. As shown in Figure 1(a), apparently, this 
approach could be difficult due to the soaring fabrication costs at 
smaller technology nodes. This fact leads to a fundamental 
question: why don’t we use the much denser ROM for CiM? 

A seemingly reasonable “answer” could be the limitation of the 
essentially read-only capability of ROM, which makes it 
impossible to update the weights stored in ROM. Differently, this 
paper tells a new story with highlighted contributions:  

First, by using the much denser ROM, we show that it is 
practical to store all the weights of relatively large networks, e.g. 
YOLO (Darknet-19 backbone), in a single cm-scale CMOS chip at 
28nm. This makes it possible to dramatically reduce and even 
prevent off-chip DRAM weight access for higher energy 
efficiency. In addition, ROM is essentially non-volatile, leading to 
standby power savings. To showcase this opportunity, the first 
1T/cell ROM-based CiM macro has been designed in 28nm CMOS, 
showing 25.6x higher density than the 6T SRAM-CiM counterpart.  

Second, to compensate the limitations by the fact that the 
weights stored in the ROM-CiM macro could not be updated, this 
paper proposes an effective convolution weight fine-tune 
technique called Residual Branch (ReBranch). ReBranch is capable 
of transferring the neural network from a pretrained generalized 
model, e.g. VGG-8 and ResNet-18 on CIFAR-100, to support many 
other specific tasks, e.g. CIFAR-10/Fashion-MNIST/Caltech101, 
with negligible accuracy loss. 

This work sheds light on a new promising CiM category. This 
early exploration has unveiled the potential for higher capacity 
and energy efficiency beyond SRAM-based CiM, with further 
opportunities of circuit, architecture, software, and cross-layer co-
optimizations in the future. 

	
Figure 1: Comparisons between methods to store more 
weights, (a) technology scaling, (b) chiplet integration. 
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Next, section 2 provides the background of ROM and residual 
block. Section 3 presents the proposed ROM-CiM concept, macro, 
the ReBranch-assisted architecture, and the YOLoC framework for 
object detection. Section 4 provides the benchmarking results. 

2 Background 

2.1 Read-Only Memory (ROM) 
Figure 2 shows the comparison between a practical read-only 

memory (ROM) and a 6T SRAM, in which one possible 1T/cell 
ROM implementation is illustrated. Because of the non-volatile 
nature, ROM also benefits from low standby power and high 
reliability of read and write disturbance immunity. Also, it is 
apparent that ROM could be much denser than SRAM.  

 
Figure 2: Illustration of (a) ROM, (b) SRAM, and (c) layout. 

The biggest challenge of replacing SRAM with ROM is the lack 
of flexibility due to fixed data. Therefore, ROM is usually for  
scenarios with no data update. If large-scale neural networks 
could be deployed on ROM-based accelerators, the problems 
caused by the low density of SRAM will be greatly alleviated. 

2.2 Residual Block 
Residual block is a simple, efficient, and common structure in 

neural networks to prevent the gradient disappearing, especially 
for large-scale DNN with more network layers [11]. Its diagram in 
ResNet is shown in Figure 3(a). The direct connection between the 
input and the output passes gradient in backpropagation to avoid 
the gradient disappearing. The convolution layers, i.e. Conv2d in 
Figure 3(a), fit the residuals.  

 
Figure 3: Diagram of (a) residual block in ResNet and (b) 
motivated residual branch. 

We introduce residual block as it motivates the ReBranch 
method in this work to overcome the flexibility challenge in ROM 
CiM. The key motivation is an assisting SRAM-based convolution 
block (for additional residual adjustments) could be added in 
parallel to the fixed ROM-based convolution block (for the 
pretrained parameters), as shown in Figure 3(b). Therefore, we can 
learn the additional residuals caused by transfer learning and 
compute in a fashion of “big ROM + small SRAM”. ReBranch will 
be described in detail in section 3. 

2.3 Related Works 

Model compression. To relieve the memory access bottleneck 
(also computing costs), model compression efforts have been 
proposed. One category of method is weight pruning [12], post 
quantization and training-aware quantization [13]. However, 
ultra-scaled networks below 8-bit quantization, such as TNN [14] 
and BNN [15], are still difficult to implement on modern networks 
like ResNet [11] and MobileNet [16]. Another model compression 
method of using much smaller networks could cause accuracy 
degradation, especially for complex tasks such as object detection 
[17]. In addition, chiplet integration in Figure 1(b) is another 
promising approach towards a larger-scale computing platform, 
but it still faces the challenge of high inter-chip communication 
costs and it does not reduce the total chip area cost for the task. 

Beyond-CMOS CiM.  Emerging beyond-CMOS devices, such as 
RRAM [6], MRAM [16], FeFET [7], etc., provide both non-
volatility and higher density for CiM when normalized to the 
technology feature size. However, due to their early infancy or 
built-in device operation mechanism limits, there are still major 
challenges to overcome, involving the device variations, 
integration capacity, reliability, or computing accuracy. 

CMOS CiM. Both SRAM-based CiM and eDRAM-based CiM 
have been reported [3][4][5]. SRAM CiM has been investigated 
more thoroughly, and recent advance makes eDRAM CiM 
intriguing because of the higher density. However, eDRAM CiM 
faces accuracy and refresh challenges due to leakage. Generally, 
although eDRAM CiM has gained higher density, CMOS-based 
solutions are currently limited to light computing tasks, or are in 
need of frequent data access to the external DRAM. This work 
extends the CMOS-based CiM to the ROM region, and provides 
opportunities beyond existing SRAM and eDRAM approaches. 

3 Proposed YOLoC Architecture 

3.1 ROM-CiM Circuits 
Figure 4 shows the proposed 1T/cell ROM-based CiM cell 

circuit, in comparison with some existing SRAM CiM cells  
[3][4][19][20][21]. Figure 4(a) is one proposed design example. It 
stores ‘0/1’ by physically connecting the access transistor gate to 
word line (WL) or a fixed voltage (typically ground). The cell 
density of the proposed ROM-CiM cell in Figure 4(a) is much 
higher than the SRAM-CiM cells (14.5-29.5x in our samples). 

 
Figure 4: Proposed 1T/cell ROM-based CiM cell in (a), and 
some existing SRAM-CiM cells in (b-f) [3][4][19][20][21]. 
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and the weight is physically connected to WL, BL will be 
connected to the ground. Otherwise, BL will be left floating.  

Figure 5 presents the proposed ROM-CiM macro as an example 
with 128 x 256 cells, 16 column-sharing 5-bit ADCs, input serial-
bit drivers, and other peripheral circuits. Cells of the same column 
or row are connected by sharing BL or WL. The BLs are initially 
pre-charged before the computing. In the computing, the serial 
activation input bits are applied to the WLs in a one-cycle-one-bit 
fashion, in which the number of unary pulses represents the 
activation amplitude (0, 1, 2, or 3 pulses applied to each WL for a 
2-bit activation input). The input activation encoding method 
using the pulse width may also be used with a different speed-
accuracy trade-off.  

 
Figure 5: Proposed ROM-based CiM macro structure, shown 
with a 128x256 array and 16 ADCs as an example. 

When multiple rows of cells are activated at the same time, the 
results are summed up over the bitline (BL). Specifically, the 
charge on the bit line is released to ground according to the 
number of turned-on cells in the column. The bitline voltage is 
then sensed by the subsequent ADC to digitize the MAC result. 
As ADCs take more than one column space, ADC sharing could 
be applied. In addition, multiple subarrays in the chip could be 
activated simultaneously to compute with high parallelism. 

3.2 Residual Branch (ReBranch) 
Goal. The direct replacement of SRAM CiM with ROM-based 

scheme has its own limitation in the weight update flexibility, as 
mentioned above. The goal of the proposed ReBranch is to provide 
flexibility by introducing a portion of SRAM CiM while still 
maintaining the feature of high density with ROM CiM and 
accuracy.  

Option One: ROM-CiM-based One-Shot Learning (ROSL). As 
shown in Figure 6(a), the one-shot classification architecture by 
meta-learning [22], could be adopted by replacing the feature 
extractor layers with the proposed ROM-CiM, and keeping the 
feature mapping classifier implementation in an SRAM-based 
TCAM distance calculator. With the growing maturity of meta-
learning, the strength of this scheme is becoming more feasible: 
when the training set is small, the classification accuracy is higher 
than other training methods as it could prevent over-fitting. The 
weakness may also be critical: (i) no accuracy advantage 
compared with other training methods when the training set is 

large (one-shot learning-oriented issue) [22], and (ii) difficulty of 
transitioning to a different task domain, e.g. from character 
recognition to traffic analysis, with a fixed feature extractor 
(ROM-oriented issue). 

 
Figure 6:  Options to provide model flexibility to ROM-CiM: 
(a) Option I: ROM-CiM-based one-shot learning, (b) Option 
II: alternative transfer learning, (c) Option III: SRAM-
assisted parallel weight decoration. 

 
Figure 7: Proposed ReBranch structure. 

Option Two: Alternative Transfer Learning (ATL). As shown in 
Figure 6(b), when transferring a pretrained model to a new target 
dataset, the weights of some layers could be fixed and 
implemented in ROM CiM, while others could be alternatively 
implemented in SRAM CiM. Practically, the first few layers have 
higher transferability and are less likely to be modified during 
transfer learning. However, it could be difficult to deploy many 
ROM-CiM layers due to transferability decay when going deep, as 
shown by the experiments in Figure 6(b).  

Option Three: SRAM-Assisted Parallel Weight Decoration (SPWD). 
As shown in Figure 6(c), a low-weight-quantization SRAM CiM 
branch could be deployed in parallel with the ROM CiM branch 
so as to modify the changes after transfer learning. Practically, to 
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maintain the accuracy, a typical SRAM CiM quantization of 2 is 
needed to decorate the 8-bit ROM CiM quantization, leading to a 
maximum area-saving of 4x. 

Option Four: Proposed Residual Branch (ReBranch). To overcome 
the weaknesses of the prior three options, Figure 7 shows the 
ReBranch structure motivated by the residual block in ResNet [11]. 
ReBranch consists of two parallel blocks: the trunk and the branch. 
The trunk is a deep convolution layer group with fixed parameters. 
The branch consists of two parameter-fixed residual-
(de)compression layers and one trainable residual-convolution 
layer group. The residual compression layer and the residual 
decompression layer are used to transform the number of 
channels of the feature map. With this structure, all the trunk 
layers and Res-(De)compress layers could be deployed in high-
density ROM-CiM, while the number of parameters in Res-Conv 
deployed in SRAM-CiM is much smaller. Practically, the branch 
convolution layer could be 16x smaller than the trunk layer.  

 
Figure 8: Diagram of point-wise convolution for channel 
compression and decompression. 

We adopt point-wise convolution [23] to compress and 
decompress the channels of the feature map. This kind of branch 
design can be equivalent to the same size convolution layer as the 
trunk, as shown in Figure 8. In principle, the trunk layer 
parameters in ROM-CiM could be adjusted to a certain extent by 
trainable SRAM-CiM. When transferring to a new dataset, the 
branch essentially learns the residual of the trunk to ensure high 
classification accuracy.  

In the proposed ReBranch, the optimization goal is to achieve 
minimum area occupation by designing proper Res-
(De)Compression layers, which leads to the reduction of the 
number of channels used in Res-Conv. Experimental results in 
section 4 will further reveal the optimization of this structure. 

3.3 Proposed YOLoC Computing Framework 
Taking advantages of the ReBranch-assisted ROM-CiM, we 

propose the YOLoC framework, as shown in Figure 9. It is 
composed of ROM-CiM, SRAM-CiM, SRAM cache, and controller. 
Corresponding to the logic flow, ROM-CiM is responsible for the 
inference of the backbone network, which accounts for most of 
the parameters and calculations. SRAM-CiM is used for ROM-CiM 
parameter fine-tune by ReBranch and feature prediction. SRAM 
cache is used to store the intermediate data, including non-CiM 
computing data of activation function and pooling. The controller 
is used to schedule data and non-CiM computing. 

 
Figure 9: Proposed architecture of YOLoC. 

In YOLoC, only a small part of weights needs to be loaded from 
off-chip DRAM to on-chip SRAM-CiM at power-on, which will 
reduce a lot of overhead in data movement. Over 90% of 
parameters are stored in the high-density ROM-CiM. In addition, 
it also provides a chance to greatly reduce the on-chip training 
overhead, especially when performing on-chip large-scale neural 
networks training [8] in SRAM-CIM. 

4 Experimental Result 

4.1  Environment Setup 
Two image classifier models, VGG-8 and ResNet-18, and the 

object detection model YOLO (DarkNet-19 backbone) are used in 
our benchmarks. SRAM-CiM and ROM-CiM macro parameters 
are all obtained from parasitic extraction and SPICE simulation in 
28nm CMOS. The system-level simulation for accuracy, area, 
latency, and energy per inference is based on our custom 
workflow simulator by PyTorch. 

4.2 ReBranch Generalization 
Figure 10 shows the ReBranch generalization evaluation results 

on VGG-8 and ResNet-8 pretrained on CIFAR-100 (C100). Figure 
10(a-b) compares accuracy and memory area on different datasets 
using VGG-8 and ResNet-18 as models. ReBranch saves area by 
10x than the all-SRAM-CiM baseline with only <0.4% accuracy 
loss in image classification. In practice, the model deployed in 
ROM should be trained on a broader dataset to accommodate a 
broader migration of applications. 

 
Figure 10: Generalization analysis of residual branch. 
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To achieve optimized area savings and generalization trade-off, 
the ReBranch hyperparameters, i.e. the compression ratio D and 
the decompression ratio U in Figure 7 are investigated. As shown 
in Figure 11(a), with D=U=4, the maximum accuracy of 93.1% and 
90.2% could be achieved for ResNet-18 and VGG-8, respectively. 
Note that the D*U is the overall parameters compression ratio, 
which determines the trade-off between the area saving and the 
model flexibility. Figure 11(b) shows that 16x compression is a 
reasonable choice in VGGNet and ResNet for good accuracy and 
overall area savings. 

Figure 12 compares the chip area and mean average precision 
(mAP) in the PASCAL VOC dataset. For chip area, the proposed 
YOLoC outperforms SRAM-CiM using YOLO and Tiny-YOLO (a 
smaller net) by 9.7x and 2.4x, respectively. YOLoC also shows 
significant mAP improvement over Option 2: Alternative Transfer 
Learning, and almost no mAP loss (-0.5% ~ 0.2%) compared with 
the SRAM-CiM baseline. 

 
Figure 11: Result of parameters analysis in Residual Branch . 

 
Figure 12: mAP and memory area in different methods. 

4.3 System Evaluation 
4.3.1 Macro evaluation. The proposed ROM-CiM macro in 

Figure 5 is evaluated. Table I summarizes the specifications of the 
proposed ROM-based CiM macro. Note that the weight reload 
overhead is not considered at this macro level, but at the system 
level (section 4.3.2). The proposed ROM-based CiM cell has 
achieved a density record of 0.014µm2/bit among existing CMOS-
based CiM cells. It is 16x smaller than a compact-rule 6T SRAM in 
the same process and 18.5x smaller than the recent SRAM-CiM 
cell in [3]. Actually, it is even denser than the commercial SRAM 
at the 5-7nm node. The peripheral of the macro is also smaller 
than the SRAM-CiM counterpart with a simplified read and write 
IO interface. Using the computing peripheral circuits from [3], 
ROM-CiM achieves a record-high density of 5Mb/mm2, which is 
19x larger than SRAM-CiM in the same 28nm process. 

Furthermore, the flexibility of sensing the MAC result by 
digitizing the remnant charge of a pre-charged bitline capacitor is 
the same as [3] and other recent SRAM CiM works. This makes 
SRAM CiM circuit optimizations potentially applicable to the 
proposed ROM CiM macro, too, provided that the increased 
density is considered. For example, the trade-off between the 
number of ADCs and simultaneously activated rows. This could 
be explored in future works. 

Table I: ROM-CiM macro specification summary 

Process 28nm CMOS 
Macro size 1.2 Mb 
Macro area 0.24 mm2 

Macro density 5 Mb/mm2 (25.6x) 
Cell area 0.014 µm2 
Input x weight 8-bit x 8-bit 
Inference time 8.9 ns 
Operation number 256 
Throughput 28.8 GOPS 
Macro area efficiency  119.4 GOPS/mm2 
MAC energy efficiency  11.5* TOPS/W 
Standby power 0 (non-volatile) 

*: Data estimated using peripherals from [3] (error range: <7%). 
 
4.3.2 System evaluation results. Based on the macro 

specifications, the system evaluation of YOLoC is carried out. The 
read/write energy and latency of SRAM buffer and DRAM are 
obtained by CACTI [24]. The weight mapping scheme is 
optimized in a way of storing the weights of different layers to the 
same sub-array, so as to achieve high ADC utilization and thus 
reduced latency. Note that the ROM-CiM is more compact than 
SRAM-CiM with a simplified R/W interface, the iso-area 
comparison is achieved by adopting more sub-arrays for ROM-
CiM in the evaluation. 

Figure 13 shows the three system evaluation configurations. 
The proposed YOLoC uses SRAM-CiM to assist ROM-CiM 
transfer to various tasks. The iso-area single-chip SRAM-CiM 
method requires DRAM to store the additional weights that on-
chip SRAM-CiM cannot store. The chiplet method makes use of 
multiple SRAM-CiM chips to store all the model parameters so 
that no DRAM is needed. For the chiplet method, intermediate 
data need to be transferred via chiplet interconnection. 

Figure 14 shows the chip-level comparisons with recent CMOS-
based CiM works, regarding the area efficiency, energy efficiency, 
and the breakdown of energy and area. Compared with the iso-
area single SRAM-CiM chip, the energy efficiency improvement 
with ResNet-18 and Tiny-YOLO is 4.8x and 10.2x, respectively. For 
larger and more complex networks that cannot be crammed onto 
a single chip, DRAM data access of SRAM-CiM brings significant 
overheads. In this case, YOLoC achieves 14.8x energy efficiency 
improvement over SRAM-CiM in the YOLO (Darknet-19 
backbone) model. The existence of a residual branch introduces 
little latency overhead. On YOLO, the latency overhead is only 8%. 
Compared with the SRAM-CiM chiplet solution, the proposed 
YOLoC achieves ~2% energy efficiency improvement with less 
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data movement overhead, plus significant total chip area savings 
of ~10x. 

4.3.3 Perspectives. Ultra-high CiM cell density is the most 
significant progress made by the proposed ROM-CiM. Because the 
pure SRAM-CiM deployment of a large-scale model on one single 
chip is limited by the high DRAM access overhead, the actual 
performance may degrade dramatically, despite data reuse. Ping-
Pong and pipelining techniques can relieve the latency issue, but 
little could be done to the energy overhead while designing an 
SRAM-CiM macro. ROM-CiM shows the opportunity of dealing 
with this situation. Future works that thoroughly exploit the 
ROM-CiM design space and cross-layer co-optimizations 
(including ROM-CiM chiplets) are promising. 

5 Conclusions 
In this paper, an ultra-high-density versatile ROM-based CiM 

method and the large-scale neural network framework YOLoC 
assisted by ReBranch have been proposed to solve the CMOS CiM 
density bottleneck. The presented ROM-based CiM array achieves 
a record-high CMOS CiM array density. The proposed ReBranch 
is capable of transferring the neural network in ROM-CiM from a 
pretrained model to various tasks. Moreover, the proposed YOLoC 
framework is capable of deploying a complete YOLO model onto 

a single CMOS-based chip without weight reloading from DRAM. 
Finally, the evaluations of the proposed techniques prove high 
generalization, area efficiency, and energy efficiency, suggesting 
a new paradigm for data-intensive neural network acceleration. 
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Figure 13: System configuration of (a) proposed YOLoC, (b) 
single-chip SRAM-CiM, and (c) SRAM-CiM chiplets. Chiplet 
interconnection parameters are from SIMBA[25] 

 
Figure 14: Chip-level comparisons with recent SRAM-based 
CiM works: (a) overview, (b) area breakdown, (c) energy 
breakdown of SRAM-CiM with different NN models. 
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