
YOLoC: DeploY Large-Scale Neural Network by ROM-based
Computing-in-Memory using ResiduaL Branch on a Chip

Yiming Chen, Guodong Yin, Zhanhong Tan, Mingyen Lee, Zekun Yang, Yongpan Liu, Huazhong Yang, Kaisheng Ma and Xueqing Li
BNRist/ICFC, Electronic Engineering Department, Tsinghua University, Beijing, China

Email: xueqingli@tsinghua.edu.cn

ABSTRACT
Computing-in-memory (CiM) is a promising technique to achieve
high energy efficiency in data-intensive matrix-vector
multiplication (MVM) by relieving the memory bo"leneck.
Unfortunately, due to the limited SRAM capacity, existing SRAM-
based CiM needs to reload the weights from DRAM in large-scale
networks. #is undesired fact weakens the energy efficiency
significantly. #is work, for the first time, proposes the concept,
design, and optimization of computing-in-ROM to achieve much
higher on-chip memory capacity, and thus less DRAM access and
lower energy consumption. Furthermore, to support different
computing scenarios with varying weights, a weight fine-tune
technique, namely Residual Branch (ReBranch), is also proposed.
ReBranch combines ROM-CiM and assisting SRAM-CiM to
achieve high versatility. YOLoC, a ReBranch-assisted ROM-CiM
framework for object detection is presented and evaluated. With
the same area in 28nm CMOS, YOLoC for several datasets has
shown significant energy efficiency improvement by 14.8x for
YOLO (DarkNet-19) and 4.8x for ResNet-18, with <8% latency
overhead and almost no mean average precision (mAP) loss (-0.5%
~ +0.2%), compared with the fully SRAM-based CiM.

CCS CONCEPTS
• Hardware ~ Integrated circuits ~ Semiconductor memory ~ Read-
only memory • Computing methodologies ~ Artificial intelligence
~ Computer vision ~ Computer vision problems ~ Object detection

KEYWORDS
Computing-in-Memory, ROM-CiM, Read-Only Memory, YOLoC.

1 Introduction
Convolutional neural network (CNN) has been widely used in
computer vision and other applications. To support more
scenarios, generally, increasing parameters in CNN are being used
in complex models. For example, Tiny-YOLO and YOLO have 11.3
M and 46 M weights, respectively. In a custom accelerator chip
design, to reduce the memory-wall overheads of energy and
latency in frequent DRAM data accesses [1][2], computing-in-
memory (CiM) techniques have been proposed based on CMOS
SRAM/eDRAM[3][4][5] and other beyond-CMOS technologies
[6][7]. Among these existing techniques, SRAM-based CiM is
intriguing because of its high design flexibility and mature
fabrication support. Unfortunately, SRAM and SRAM-based CiM
face the challenge of low density: it is challenging to store all
weights inside one chip for large neural networks. Consequently,
the data in the SRAM need to be dumped and reloaded from the
DRAM, which results in undesired energy and latency costs [8].
Notice that, although reusing the weight data reduces the total

times of DRAM access [9], loading the weights from DRAM is a
bottleneck towards high energy efficiency [10].

One approach to the mitigation of the memory capacity
dilemma is using an advanced process technology with scaled-
down transistors. As shown in Figure 1(a), apparently, this
approach could be difficult due to the soaring fabrication costs at
smaller technology nodes. This fact leads to a fundamental
question: why don’t we use the much denser ROM for CiM?

A seemingly reasonable “answer” could be the limitation of the
essentially read-only capability of ROM, which makes it
impossible to update the weights stored in ROM. Differently, this
paper tells a new story with highlighted contributions:

First, by using the much denser ROM, we show that it is
practical to store all the weights of relatively large networks, e.g.
YOLO (Darknet-19 backbone), in a single cm-scale CMOS chip at
28nm. This makes it possible to dramatically reduce and even
prevent off-chip DRAM weight access for higher energy
efficiency. In addition, ROM is essentially non-volatile, leading to
standby power savings. To showcase this opportunity, the first
1T/cell ROM-based CiM macro has been designed in 28nm CMOS,
showing 25.6x higher density than the 6T SRAM-CiM counterpart.

Second, to compensate the limitations by the fact that the
weights stored in the ROM-CiM macro could not be updated, this
paper proposes an effective convolution weight fine-tune
technique called Residual Branch (ReBranch). ReBranch is capable
of transferring the neural network from a pretrained generalized
model, e.g. VGG-8 and ResNet-18 on CIFAR-100, to support many
other specific tasks, e.g. CIFAR-10/Fashion-MNIST/Caltech101,
with negligible accuracy loss.

This work sheds light on a new promising CiM category. This
early exploration has unveiled the potential for higher capacity
and energy efficiency beyond SRAM-based CiM, with further
opportunities of circuit, architecture, software, and cross-layer co-
optimizations in the future.

	
Figure 1: Comparisons between methods to store more
weights, (a) technology scaling, (b) chiplet integration.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+02

1.E+03

1.E+04

1.E+05

130 90 65 45 40 28 20 16 10 7 5

N
or

m
al

iz
ed

Ta
pe

-o
ut

C
os

t

N
or

m
al

iz
ed

D
en

si
ty

Process (nm)

SRAM density
Tapeout cost

ROM-CiM
(This work)

SRAM-CiM

Energy Efficiency

Ar
ea

SRAM-CiM
Single-chip

SRAM-CiM
Chiplet

ROM-CiM
(This work)

(a) (b)

Next, section 2 provides the background of ROM and residual
block. Section 3 presents the proposed ROM-CiM concept, macro,
the ReBranch-assisted architecture, and the YOLoC framework for
object detection. Section 4 provides the benchmarking results.

2 Background

2.1 Read-Only Memory (ROM)
Figure 2 shows the comparison between a practical read-only

memory (ROM) and a 6T SRAM, in which one possible 1T/cell
ROM implementation is illustrated. Because of the non-volatile
nature, ROM also benefits from low standby power and high
reliability of read and write disturbance immunity. Also, it is
apparent that ROM could be much denser than SRAM.

Figure 2: Illustration of (a) ROM, (b) SRAM, and (c) layout.

The biggest challenge of replacing SRAM with ROM is the lack
of flexibility due to fixed data. Therefore, ROM is usually for
scenarios with no data update. If large-scale neural networks
could be deployed on ROM-based accelerators, the problems
caused by the low density of SRAM will be greatly alleviated.

2.2 Residual Block
Residual block is a simple, efficient, and common structure in

neural networks to prevent the gradient disappearing, especially
for large-scale DNN with more network layers [11]. Its diagram in
ResNet is shown in Figure 3(a). The direct connection between the
input and the output passes gradient in backpropagation to avoid
the gradient disappearing. The convolution layers, i.e. Conv2d in
Figure 3(a), fit the residuals.

Figure 3: Diagram of (a) residual block in ResNet and (b)
motivated residual branch.

We introduce residual block as it motivates the ReBranch
method in this work to overcome the flexibility challenge in ROM
CiM. The key motivation is an assisting SRAM-based convolution
block (for additional residual adjustments) could be added in
parallel to the fixed ROM-based convolution block (for the
pretrained parameters), as shown in Figure 3(b). Therefore, we can
learn the additional residuals caused by transfer learning and
compute in a fashion of “big ROM + small SRAM”. ReBranch will
be described in detail in section 3.

2.3 Related Works

Model compression. To relieve the memory access bottleneck
(also computing costs), model compression efforts have been
proposed. One category of method is weight pruning [12], post
quantization and training-aware quantization [13]. However,
ultra-scaled networks below 8-bit quantization, such as TNN [14]
and BNN [15], are still difficult to implement on modern networks
like ResNet [11] and MobileNet [16]. Another model compression
method of using much smaller networks could cause accuracy
degradation, especially for complex tasks such as object detection
[17]. In addition, chiplet integration in Figure 1(b) is another
promising approach towards a larger-scale computing platform,
but it still faces the challenge of high inter-chip communication
costs and it does not reduce the total chip area cost for the task.

Beyond-CMOS CiM. Emerging beyond-CMOS devices, such as
RRAM [6], MRAM [16], FeFET [7], etc., provide both non-
volatility and higher density for CiM when normalized to the
technology feature size. However, due to their early infancy or
built-in device operation mechanism limits, there are still major
challenges to overcome, involving the device variations,
integration capacity, reliability, or computing accuracy.

CMOS CiM. Both SRAM-based CiM and eDRAM-based CiM
have been reported [3][4][5]. SRAM CiM has been investigated
more thoroughly, and recent advance makes eDRAM CiM
intriguing because of the higher density. However, eDRAM CiM
faces accuracy and refresh challenges due to leakage. Generally,
although eDRAM CiM has gained higher density, CMOS-based
solutions are currently limited to light computing tasks, or are in
need of frequent data access to the external DRAM. This work
extends the CMOS-based CiM to the ROM region, and provides
opportunities beyond existing SRAM and eDRAM approaches.

3 Proposed YOLoC Architecture

3.1 ROM-CiM Circuits
Figure 4 shows the proposed 1T/cell ROM-based CiM cell

circuit, in comparison with some existing SRAM CiM cells
[3][4][19][20][21]. Figure 4(a) is one proposed design example. It
stores ‘0/1’ by physically connecting the access transistor gate to
word line (WL) or a fixed voltage (typically ground). The cell
density of the proposed ROM-CiM cell in Figure 4(a) is much
higher than the SRAM-CiM cells (14.5-29.5x in our samples).

Figure 4: Proposed 1T/cell ROM-based CiM cell in (a), and
some existing SRAM-CiM cells in (b-f) [3][4][19][20][21].

The computing functionality is carried out between the input
WL and the stored ‘0/1’ weight. Only when both the input is high

(a)

(b)

WL

BL

BL BLB

WL

SL (GND/Floating)

(c)

ROM

SRAM

3x3, 64
Conv2d

3x3, 64
Conv2d

O
ut
pu
tF
ea
tu
re

M
ap
(O
FM
)

In
pu
tF
ea
tu
re

M
ap
(IF
M
)

(a) (b)

O
ut
pu
tF
ea
tu
re

M
ap
(O
FM
)

In
pu
tF
ea
tu
re

M
ap
(IF
M
) Fixed Layers

(Big ROM-CiM)

Residual Layers
(Small SRAM-CiM)

Direct Connect

Residual Adjustments

(a) Proposed ROM-CiM

WLRWLL

BL BLB

CVSS1 CVSS2

(b) 6T

RBL

RWL

(c) 8T

(d) Twin 8T

RWL

LBLT LBLF

(e) 10T (f) LCC-6T

VGBL VGBLB

HWL

6T
SRAM BLBBL

RBL

RWL
6T

SRAM
6T

SRAM
QBQ

WL

BL

’1’: fused
‘0’: grounded

and the weight is physically connected to WL, BL will be
connected to the ground. Otherwise, BL will be left floating.

Figure 5 presents the proposed ROM-CiM macro as an example
with 128 x 256 cells, 16 column-sharing 5-bit ADCs, input serial-
bit drivers, and other peripheral circuits. Cells of the same column
or row are connected by sharing BL or WL. The BLs are initially
pre-charged before the computing. In the computing, the serial
activation input bits are applied to the WLs in a one-cycle-one-bit
fashion, in which the number of unary pulses represents the
activation amplitude (0, 1, 2, or 3 pulses applied to each WL for a
2-bit activation input). The input activation encoding method
using the pulse width may also be used with a different speed-
accuracy trade-off.

Figure 5: Proposed ROM-based CiM macro structure, shown
with a 128x256 array and 16 ADCs as an example.

When multiple rows of cells are activated at the same time, the
results are summed up over the bitline (BL). Specifically, the
charge on the bit line is released to ground according to the
number of turned-on cells in the column. The bitline voltage is
then sensed by the subsequent ADC to digitize the MAC result.
As ADCs take more than one column space, ADC sharing could
be applied. In addition, multiple subarrays in the chip could be
activated simultaneously to compute with high parallelism.

3.2 Residual Branch (ReBranch)
Goal. The direct replacement of SRAM CiM with ROM-based

scheme has its own limitation in the weight update flexibility, as
mentioned above. The goal of the proposed ReBranch is to provide
flexibility by introducing a portion of SRAM CiM while still
maintaining the feature of high density with ROM CiM and
accuracy.

Option One: ROM-CiM-based One-Shot Learning (ROSL). As
shown in Figure 6(a), the one-shot classification architecture by
meta-learning [22], could be adopted by replacing the feature
extractor layers with the proposed ROM-CiM, and keeping the
feature mapping classifier implementation in an SRAM-based
TCAM distance calculator. With the growing maturity of meta-
learning, the strength of this scheme is becoming more feasible:
when the training set is small, the classification accuracy is higher
than other training methods as it could prevent over-fitting. The
weakness may also be critical: (i) no accuracy advantage
compared with other training methods when the training set is

large (one-shot learning-oriented issue) [22], and (ii) difficulty of
transitioning to a different task domain, e.g. from character
recognition to traffic analysis, with a fixed feature extractor
(ROM-oriented issue).

Figure 6: Options to provide model flexibility to ROM-CiM:
(a) Option I: ROM-CiM-based one-shot learning, (b) Option
II: alternative transfer learning, (c) Option III: SRAM-
assisted parallel weight decoration.

Figure 7: Proposed ReBranch structure.

Option Two: Alternative Transfer Learning (ATL). As shown in
Figure 6(b), when transferring a pretrained model to a new target
dataset, the weights of some layers could be fixed and
implemented in ROM CiM, while others could be alternatively
implemented in SRAM CiM. Practically, the first few layers have
higher transferability and are less likely to be modified during
transfer learning. However, it could be difficult to deploy many
ROM-CiM layers due to transferability decay when going deep, as
shown by the experiments in Figure 6(b).

Option Three: SRAM-Assisted Parallel Weight Decoration (SPWD).
As shown in Figure 6(c), a low-weight-quantization SRAM CiM
branch could be deployed in parallel with the ROM CiM branch
so as to modify the changes after transfer learning. Practically, to

Cell ‘0’

BL0 BL1 BL2 BL255

In
pu

t D
riv

er

ADC0 ADC1 ADC2 ADC15

WL0: ‘1’

WL127: ‘0’

WL2: ‘0’

WL1: ‘1’

Cell ‘1’

CL CL CL
CL

Precharger & Column Driver

Ctrl

Ctrl

Shift & Add

‘ON’
1 * 1 = 1

‘OFF’
1 * 0 = 0

‘OFF’
0 * 0 = 0

‘OFF’
0 * 1 = 0

I * W = R

conv-1 128

Layers

conv-2 128
conv-3 256
conv-4 256
conv-5 512

High

Medium

Transferability

Small

Large

of weights

conv-5 512

All Layers
Classifier only

4% accuracy
loss

Fe
at
ur
e
M
ap

Feature Extractor

Distance
Comparison

(a)

(b)

ROM-CiM CPU/TCAM

90

88

86

84

(c)

ROM-CiM

SRAM-CiM

still
1/2 ~ 1/4
weights

Epochs15050

Acc. (%)

Option I:

Option II: Option III:

Deep
Conv
NàM
(low-bit)

Deep
Conv
NàM
(high-bit)

IFM (N channels)

IFM (M channels)

+

SRAM-CiM:

IFM (N channels)

OFM (M channels)

ROM-CiM
SRAM-CiM

Trunk Branch

D: channel compression ratio
U: channel decompression ratio

in: N out: M

…

in: N

out: N/D

in: M/U
out: M

…
only 1/(D*U)
weights

in: N/D

out: M/U

Res-Compress

Deep
Conv

Res-Decompress

Res-Conv

…

…

Option IV (Proposed):

maintain the accuracy, a typical SRAM CiM quantization of 2 is
needed to decorate the 8-bit ROM CiM quantization, leading to a
maximum area-saving of 4x.

Option Four: Proposed Residual Branch (ReBranch). To overcome
the weaknesses of the prior three options, Figure 7 shows the
ReBranch structure motivated by the residual block in ResNet [11].
ReBranch consists of two parallel blocks: the trunk and the branch.
The trunk is a deep convolution layer group with fixed parameters.
The branch consists of two parameter-fixed residual-
(de)compression layers and one trainable residual-convolution
layer group. The residual compression layer and the residual
decompression layer are used to transform the number of
channels of the feature map. With this structure, all the trunk
layers and Res-(De)compress layers could be deployed in high-
density ROM-CiM, while the number of parameters in Res-Conv
deployed in SRAM-CiM is much smaller. Practically, the branch
convolution layer could be 16x smaller than the trunk layer.

Figure 8: Diagram of point-wise convolution for channel
compression and decompression.

We adopt point-wise convolution [23] to compress and
decompress the channels of the feature map. This kind of branch
design can be equivalent to the same size convolution layer as the
trunk, as shown in Figure 8. In principle, the trunk layer
parameters in ROM-CiM could be adjusted to a certain extent by
trainable SRAM-CiM. When transferring to a new dataset, the
branch essentially learns the residual of the trunk to ensure high
classification accuracy.

In the proposed ReBranch, the optimization goal is to achieve
minimum area occupation by designing proper Res-
(De)Compression layers, which leads to the reduction of the
number of channels used in Res-Conv. Experimental results in
section 4 will further reveal the optimization of this structure.

3.3 Proposed YOLoC Computing Framework
Taking advantages of the ReBranch-assisted ROM-CiM, we

propose the YOLoC framework, as shown in Figure 9. It is
composed of ROM-CiM, SRAM-CiM, SRAM cache, and controller.
Corresponding to the logic flow, ROM-CiM is responsible for the
inference of the backbone network, which accounts for most of
the parameters and calculations. SRAM-CiM is used for ROM-CiM
parameter fine-tune by ReBranch and feature prediction. SRAM
cache is used to store the intermediate data, including non-CiM
computing data of activation function and pooling. The controller
is used to schedule data and non-CiM computing.

Figure 9: Proposed architecture of YOLoC.

In YOLoC, only a small part of weights needs to be loaded from
off-chip DRAM to on-chip SRAM-CiM at power-on, which will
reduce a lot of overhead in data movement. Over 90% of
parameters are stored in the high-density ROM-CiM. In addition,
it also provides a chance to greatly reduce the on-chip training
overhead, especially when performing on-chip large-scale neural
networks training [8] in SRAM-CIM.

4 Experimental Result

4.1 Environment Setup
Two image classifier models, VGG-8 and ResNet-18, and the

object detection model YOLO (DarkNet-19 backbone) are used in
our benchmarks. SRAM-CiM and ROM-CiM macro parameters
are all obtained from parasitic extraction and SPICE simulation in
28nm CMOS. The system-level simulation for accuracy, area,
latency, and energy per inference is based on our custom
workflow simulator by PyTorch.

4.2 ReBranch Generalization
Figure 10 shows the ReBranch generalization evaluation results

on VGG-8 and ResNet-8 pretrained on CIFAR-100 (C100). Figure
10(a-b) compares accuracy and memory area on different datasets
using VGG-8 and ResNet-18 as models. ReBranch saves area by
10x than the all-SRAM-CiM baseline with only <0.4% accuracy
loss in image classification. In practice, the model deployed in
ROM should be trained on a broader dataset to accommodate a
broader migration of applications.

Figure 10: Generalization analysis of residual branch.

IFM

Channel: N

Channel: N/DPoint-wise
Res-compress:
W1

Channel: M/U

OFM

Channel: M
Point-wise
Res-Decompress:
W2

Res-Conv2d:
Wb

!"#$ %!, ' =)*2,"- ' ⋅ /012#3 %!

			=)*2,"- ' ⋅ /012#3(%"%#%$)
			=)*2,"- '
		/012#3 %" /012#3 %# /012#3 %$
			= !"#$(!"#$!"#$ ',%" ,%# ,%$)

…

)*2,"-:

/012#3:

Channel
Channel

Slide windows

O
ut

C
ha

nn
el…

In Channel
In Channel

Controller

ROM-CiM
(High Density)

SRAM-CiM
(Low Density)

NoC

IO
Prediction

Backbone

Physical Logical

Output Buffer

Output Buffer

Cell

Cache In
pu
tD
riv
er

In
pu
tD
riv
er

Cell

SRAM-CiMROM-CiM

SRAM-CiM

Cell

Cell

1.00
0.05

0.53
0.11

2.58

0.13

1.36

0.29

90.9 87.3
89.9 90.2

93.40

84.16

93.01 93.05

77

82

87

92

97

0

1

2

3

4

All SRAM All ROM Deep Conv ReBranch

Ac
cu
ra
cy
(%
)

Ar
ea
(N
or
m
al
iz
ed
)

Area(VGG8) Area(ResNet18)
Accuracy(VGG8) Accuracy(ResNet18)

Method ROM SRAM

All SRAM [3] - feature
extractor

All ROM
(Option II)

feature
extractor -

Deep Conv
(Option II)

except
last conv last conv

ReBranch
(Option IV)

feature
extractor res-conv

90.9

99.2
93.9

66.8

87.3

99.2
92.2

56.1

90.2

99.4
93.0

67.5

50

60

70

80

90
100

C100->CIFAR10 C100->MNIST C100->Fashion MNIST C100->Caltech101

A
cc

ur
ac

y
(%

) All SRAM All ROM
ReBranch

(a)

(b)

97

92

67

62

570

1

2

3

4

All SRAM All ROM Deep Conv ReBranch

To achieve optimized area savings and generalization trade-off,
the ReBranch hyperparameters, i.e. the compression ratio D and
the decompression ratio U in Figure 7 are investigated. As shown
in Figure 11(a), with D=U=4, the maximum accuracy of 93.1% and
90.2% could be achieved for ResNet-18 and VGG-8, respectively.
Note that the D*U is the overall parameters compression ratio,
which determines the trade-off between the area saving and the
model flexibility. Figure 11(b) shows that 16x compression is a
reasonable choice in VGGNet and ResNet for good accuracy and
overall area savings.

Figure 12 compares the chip area and mean average precision
(mAP) in the PASCAL VOC dataset. For chip area, the proposed
YOLoC outperforms SRAM-CiM using YOLO and Tiny-YOLO (a
smaller net) by 9.7x and 2.4x, respectively. YOLoC also shows
significant mAP improvement over Option 2: Alternative Transfer
Learning, and almost no mAP loss (-0.5% ~ 0.2%) compared with
the SRAM-CiM baseline.

Figure 11: Result of parameters analysis in Residual Branch .

Figure 12: mAP and memory area in different methods.

4.3 System Evaluation
4.3.1 Macro evaluation. The proposed ROM-CiM macro in

Figure 5 is evaluated. Table I summarizes the specifications of the
proposed ROM-based CiM macro. Note that the weight reload
overhead is not considered at this macro level, but at the system
level (section 4.3.2). The proposed ROM-based CiM cell has
achieved a density record of 0.014µm2/bit among existing CMOS-
based CiM cells. It is 16x smaller than a compact-rule 6T SRAM in
the same process and 18.5x smaller than the recent SRAM-CiM
cell in [3]. Actually, it is even denser than the commercial SRAM
at the 5-7nm node. The peripheral of the macro is also smaller
than the SRAM-CiM counterpart with a simplified read and write
IO interface. Using the computing peripheral circuits from [3],
ROM-CiM achieves a record-high density of 5Mb/mm2, which is
19x larger than SRAM-CiM in the same 28nm process.

Furthermore, the flexibility of sensing the MAC result by
digitizing the remnant charge of a pre-charged bitline capacitor is
the same as [3] and other recent SRAM CiM works. This makes
SRAM CiM circuit optimizations potentially applicable to the
proposed ROM CiM macro, too, provided that the increased
density is considered. For example, the trade-off between the
number of ADCs and simultaneously activated rows. This could
be explored in future works.

Table I: ROM-CiM macro specification summary

Process 28nm CMOS
Macro size 1.2 Mb
Macro area 0.24 mm2

Macro density 5 Mb/mm2 (25.6x)
Cell area 0.014 µm2
Input x weight 8-bit x 8-bit
Inference time 8.9 ns
Operation number 256
Throughput 28.8 GOPS
Macro area efficiency 119.4 GOPS/mm2
MAC energy efficiency 11.5* TOPS/W
Standby power 0 (non-volatile)

*: Data estimated using peripherals from [3] (error range: <7%).

4.3.2 System evaluation results. Based on the macro

specifications, the system evaluation of YOLoC is carried out. The
read/write energy and latency of SRAM buffer and DRAM are
obtained by CACTI [24]. The weight mapping scheme is
optimized in a way of storing the weights of different layers to the
same sub-array, so as to achieve high ADC utilization and thus
reduced latency. Note that the ROM-CiM is more compact than
SRAM-CiM with a simplified R/W interface, the iso-area
comparison is achieved by adopting more sub-arrays for ROM-
CiM in the evaluation.

Figure 13 shows the three system evaluation configurations.
The proposed YOLoC uses SRAM-CiM to assist ROM-CiM
transfer to various tasks. The iso-area single-chip SRAM-CiM
method requires DRAM to store the additional weights that on-
chip SRAM-CiM cannot store. The chiplet method makes use of
multiple SRAM-CiM chips to store all the model parameters so
that no DRAM is needed. For the chiplet method, intermediate
data need to be transferred via chiplet interconnection.

Figure 14 shows the chip-level comparisons with recent CMOS-
based CiM works, regarding the area efficiency, energy efficiency,
and the breakdown of energy and area. Compared with the iso-
area single SRAM-CiM chip, the energy efficiency improvement
with ResNet-18 and Tiny-YOLO is 4.8x and 10.2x, respectively. For
larger and more complex networks that cannot be crammed onto
a single chip, DRAM data access of SRAM-CiM brings significant
overheads. In this case, YOLoC achieves 14.8x energy efficiency
improvement over SRAM-CiM in the YOLO (Darknet-19
backbone) model. The existence of a residual branch introduces
little latency overhead. On YOLO, the latency overhead is only 8%.
Compared with the SRAM-CiM chiplet solution, the proposed
YOLoC achieves ~2% energy efficiency improvement with less

0
1
2
3
4
5
6
7

86

88

90

92

94

96

4 16 64

N
or
m
al
iz
ed
Ar
ea

Ac
cu
ra
cy
(%
)

Branch Compression Ratio (D*U)

Area (ROM) Area (SRAM)
Acc. (VGG) Acc. (ResNet)

86

88

90

92

94

96

1-16 2-8 4-4 8-2 16-1

Ac
cu
ra
cy
(%
)

Compression-Decompress Ratio

Acc. (VGG)
Acc. (ResNet)

(a) (b)

Small D*U:
SRAM area
bottleneck

Large D*U:
Acc. loss

81.2

70.7

78.3

81.4

70

72

74

76

78

80

82

84

86

88

90

0

5

10

15

20

25

SRAM-CiM Tiny-YOLO* Deep-Conv YOLoC

m
A

P
-

P
A

S
C

A
L

V
O

C
(%

)

C
hi

p
A

re
a

(A
ll

W
ei

gh
t F

it
in

)(
cm

2) SRAM-CiM ROM-CiM
Cache Peripheral
mAP

mAP
COCO
à

Pedestrian
Detection

COCO
à

Traffic
Detection

COCO
à

PASCAL
VOC

All Layers
Trainable

(SRAM-CiM [3])
83.6% 87.0% 81.2%

Only
Prediction
Trainable
(Option II)

81.2% 85.3% 78.3%

Proposed
Residual
Branch

(Option IV)
83.1% 87.1% 81.4%

* Tiny-YOLO: a smaller backbone in the same framework (all layers trainable).

9.7x

SRAM-CiM Tiny-
YOLO*

Deep
Conv

YOLoC

2.4x

data movement overhead, plus significant total chip area savings
of ~10x.

4.3.3 Perspectives. Ultra-high CiM cell density is the most
significant progress made by the proposed ROM-CiM. Because the
pure SRAM-CiM deployment of a large-scale model on one single
chip is limited by the high DRAM access overhead, the actual
performance may degrade dramatically, despite data reuse. Ping-
Pong and pipelining techniques can relieve the latency issue, but
little could be done to the energy overhead while designing an
SRAM-CiM macro. ROM-CiM shows the opportunity of dealing
with this situation. Future works that thoroughly exploit the
ROM-CiM design space and cross-layer co-optimizations
(including ROM-CiM chiplets) are promising.

5 Conclusions
In this paper, an ultra-high-density versatile ROM-based CiM

method and the large-scale neural network framework YOLoC
assisted by ReBranch have been proposed to solve the CMOS CiM
density bottleneck. The presented ROM-based CiM array achieves
a record-high CMOS CiM array density. The proposed ReBranch
is capable of transferring the neural network in ROM-CiM from a
pretrained model to various tasks. Moreover, the proposed YOLoC
framework is capable of deploying a complete YOLO model onto

a single CMOS-based chip without weight reloading from DRAM.
Finally, the evaluations of the proposed techniques prove high
generalization, area efficiency, and energy efficiency, suggesting
a new paradigm for data-intensive neural network acceleration.

6 Acknowledgment
This work is supported in part by National Key R&D

Program of China (2019YFA0706100), and in part by NSFC
(U21B2030, 61874066, 61720106013, 61934005).

REFERENCES
[1] N. P. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing

Unit,” in 2017 ISCA, Toronto ON Canada, Jun. 2017.
[2] A. Skillman and T. Edso, “A Technical Overview of Cortex-M55 and Ethos-U55:

Arm’s Most Capable Processors for Endpoint AI,” in 2020 HCS, Aug. 2020.
[3] J.-W. Su et al., “16.3 A 28nm 384kb 6T-SRAM Computation-in-Memory Macro

with 8b Precision for AI Edge Chips,” in 2021 ISSCC, Feb. 2021.
[4] Q. Dong et al., “15.3 A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM

Macro in 7nm FinFET CMOS for Machine-Learning Applications,”in ISSCC 2020.
[5] S. Xie, C. Ni, A. Sayal, P. Jain, F. Hamzaoglu, and J. P. Kulkarni, “16.2 eDRAM-

CIM: Compute-In-Memory Design with Reconfigurable Embedded-Dynamic-
Memory Array Realizing Adaptive Data Converters and Charge-Domain
Computing,” in 2021 ISSCC, San Francisco, CA, USA, Feb. 2021.

[6] L. Xia et al., “Technological Exploration of RRAM Crossbar Array for Matrix-
Vector Multiplication,” J. Comput. Sci. Technol., vol. 31, no. 1, Jan. 2016.

[7] D. Reis, M. Niemier, and X. S. Hu, “Computing in memory with FeFETs,” in 2018
ISLPED, Seattle WA USA, Jul. 2018.

[8] H. Jiang et al., “A Two-way SRAM Array based Accelerator for Deep Neural
Network On-chip Training,” in 2020 DAC, San Francisco, CA, USA, Jul. 2020.

[9] J. Yue et al., “15.2 A 2.75-to-75.9TOPS/W Computing-in-Memory NN Processor
Supporting Set-Associate Block-Wise Zero Skipping and Ping-Pong CIM with
Simultaneous Computation and Weight Updating,” in ISSCC 2021.

[10] H. Mo et al., “9.2 A 28nm 12.1TOPS/W Dual-Mode CNN Processor Using
Effective-Weight-Based Convolution and Error-Compensation-Based
Prediction,” in 2021 ISSCC, San Francisco, CA, USA, Feb. 2021.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in 2016 CVPR, Las Vegas, NV, USA, Jun. 2016.

[12] T. Zhang et al., “A Systematic DNN Weight Pruning Framework using
Alternating Direction Method of Multipliers,” ArXiv180403294 Cs, 2018.

[13] B. Jacob et al., “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference,” in 2018 CVPR, Salt Lake City, UT, Jun. 2018.

[14] F. Li, B. Zhang, and B. Liu, “Ternary Weight Networks,” ArXiv160504711 Cs, Nov.
2016.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
Neural Networks: Training Deep Neural Networks with Weights and
Activations Constrained to +1 or -1,” ArXiv160202830 Cs, Mar. 2016.

[16] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” ArXiv170404861 Cs, Apr. 2017.

[17] A. Womg, M. J. Shafiee, F. Li, and B. Chwyl, “Tiny SSD: A Tiny Single-Shot
Detection Deep Convolutional Neural Network for Real-Time Embedded Object
Detection,” in 2018 15th Conference on Computer and Robot Vision (CRV),
Toronto, ON, Canada, May 2018.

[18] Y. Pan et al., “A Multilevel Cell STT-MRAM-Based Computing In-Memory
Accelerator for Binary Convolutional Neural Network,” IEEE Trans. Magn., vol.
54, no. 11, Nov. 2018.

[19] X. Si et al., “A Twin-8T SRAM Computation-in-Memory Unit-Macro for
Multibit CNN-Based AI Edge Processors,” IEEE JSSC vol. 55, no. 1, Jan. 2020.

[20] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An Energy-Efficient SRAM
With In-Memory Dot-Product Computation for Low-Power Convolutional
Neural Networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1, Jan. 2019.

[21] X. Si et al., “A Dual-Split 6T SRAM-Based Computing-in-Memory Unit-Macro
With Fully Parallel Product-Sum Operation for Binarized DNN Edge Processors,”
IEEE Trans. Circuits Syst. Regul. Pap., vol. 66, no. 11, Nov. 2019.

[22] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra, “Matching
Networks for One Shot Learning,” ArXiv160604080 Cs Stat, Dec. 2017.

[23] C. Szegedy et al., “Going Deeper with Convolutions,” ArXiv14094842 Cs, Sep.
2014.

[24] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, “CACTI-IO:
CACTI With OFF-Chip Power-Area-Timing Models,” IEEE Trans. Very Large
Scale Integr. VLSI Syst., vol. 23, no. 7, Jul. 2015.

[25] J. W. Poulton et al., “A 1.17-pJ/b, 25-Gb/s/pin Ground-Referenced Single-Ended
Serial Link for Off- and On-Package Communication Using a Process- and
Temperature-Adaptive Voltage Regulator,” IEEE JSSC, vol. 54, no. 1, Jan. 2019.

Figure 13: System configuration of (a) proposed YOLoC, (b)
single-chip SRAM-CiM, and (c) SRAM-CiM chiplets. Chiplet
interconnection parameters are from SIMBA[25]

Figure 14: Chip-level comparisons with recent SRAM-based
CiM works: (a) overview, (b) area breakdown, (c) energy
breakdown of SRAM-CiM with different NN models.

DRAMSRAM-CiM Bu
s

SRAM-CiM

ROM-CiM

(b) Single chip SRAM CiM

(a) YOLoC

(c) Chiplet SRAM CiM

…

…
Chiplet

interconnection

G
lo

ba
l

Bu
ffe

r

Ctrl

Bu
ffe

r

SRAM-CiM Bu
ffe

r

SRAM-CiM Bu
ffe

r

SRAM-CiM Bu
ffe

r

SRAM-CiM Bu
ffe

r

ROM-CiM

SRAM-CiM

Array
37%

Buffer
10%

ADC
21%

R/W
20%

Peripheral
12%

0

2

4

6

8

10

12

14

16

18

20

0 5 10

A
re

a
(c

m
2)

Energy Efficiency (TOPS/W)

YOLoC
ISSCC 21’[3]-10 chiplets
ISSCC 21’[3]-single chip

1x
4.8x

10.2x 14.8x

0

4

8

12

16

0%

25%

50%

75%

100%

VGG-8 ResNet-18 Tiny-YOLO YOLO

Im
p

ro
ve

m
e

n
t
R

a
tio

E
n
e
rg

y
B

re
a

kd
o

w
n

Computing: CiM Computing: Peripheral DRAM Energy Eff. Improve

(a)

(c)

(b)

Tr
ad

e-
of

f

Weight reload
overhead

Area
overhead

Area Breakdown

ROM-CiM
SRAM-CiM

ROM-CiM

SRAM-CiM

YOLoC
YOLoC

